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Abstract—Two ways to substantially enhance wireless broad- the coverage area of a base station. However, this reduction
band capacity are full frequency reuse and smaller cells, both of interference is achieved at the expense of significantlyirdim
which result in operational regimes that are highly dynamic and ished individual peak and overall system capacity. Reutsiag

interference limited. This paper presents a system-level appro&c tire fr n trum in ever Il can allow us t hi
to interference management, that has reasonable backhaul com entire irequency spectru every cell can allow us to e

munication and computation requirements. The basis for the Very large network capacities, provided inter-cell inteeihce
approach is clustering and aggregation of measurements of the is effectively managed.

spatial diversity in sensitivity_ to interference associated with Most approaches for mitigating the effects of inter-cell
average user populations. This enables the system to exchanggniarference have been studied in the context of a static

information and optimize coordinated transmission schedules lation. Centralized icint ¢ schedulin sem
using only coarse grained data. The paper explores various ways YS€"_popuiation. Lentralizeéd joint user scheduling SCseme

of optimizing such schedules: from a static, decoupled version to requiring large amounts of information to be conveyed to a
a dynamic version capturing user-level scheduling, fluctuating centralized scheduler, are presented in [1], [2]. The edin&d
loads and inter-cell interference that couples base stations’ scheduler also has to solve a highly complex optimization
performance. Based on extensive system-level simulations, weyqplem pased on the queue and channel states of all the users
demonstrate reductions in file transfer delay ranging from 20— . . . .
80%, from light to heavy loads, as compared to a simple baseline In the network to, makg scheduling decisions. AIFerr.]atl,ver
not unlike those in the field today. This improvement is achieved Static schemes using different reuse factors over diftetieTe
while providing more uniform coverage, and reducing base periods to protect vulnerable users have been considezed, s
station power consumption by up to 45%. e.g., [3]-[6]. A quasi-static scheme based on a similargipie
is presented in [7]. The above schemes only considered base
stations that either transmit at maximum power, or are tlirne
One way to overcome a dearth of spectrum is to consideif. They also do not take into consideration the impact of
network deployments with increased base station/access paising adaptive modulation and coding schemes. A power-
densities. By decreasing the distance between users aind tbentrol based interference management scheme is proposed
base stations, one can drastically increase capacity whie[8]: users are served using one of two sets of carriers that
reducing transmission energy requirements. Of courss, thise different power levels. A different approach that \arie
comes at a significant increase in infrastructure and managmansmit power across time at a slow pace so as to improve
ment costs. There are also deleterious implications in gerperformance is proposed in [9]. The users then track the
of the operational regime of such networks. In particulae t varying channel conditions and this information is used by
proportion of users whose capacity is limited by interfeeen the base station to effectively schedule transmissions.
from their neighbors grows. Also, as the number of baseThe focus of these schemes is to ensure that all users
stations serving an area is increased, the coverage area pandeive acceptable signal to interference ratios. Howyévis
the number of users served by individual base stations dretric does not fully describe the performance experienced
creases. This has the undesirable side effect of reducing Hy best effort users. Further, the characteristics of ther us
network’s capability for statistical multiplexing and meases population being served do not influence the power control
the ‘burstiness’ of the offered load. Thus we are faced wiftolicy, leaving scope for further improvement. In a readist
operating wireless systems in a highly dynamic, interfeeenscenario, data requests from users are generated at random
limited regime. Effectively managing inter-cell interégice is times, and the users leave when their service requirements
essential to fully realizing the potential of broadbandeléss have been met. This dynamic system is, in general, very hard
networks, and is the focus of this paper. to analyze and has not been studied as extensively as the
Traditional approaches for mitigating interference asrostatic version, i.e., serving a fixed set of backlogged ugdrs
base stations in a cellular network partition resourceg., e.actual performance that users perceive in the dynamicrayste
frequency, so that concurrent transmissions can be réalizan be very different from the performance predicted by the
with minimal interference. Such approaches are simple and static model; e.g., the flow level performance of opportimis
reduce the effective interference seen by users, thus eimgan scheduling was studied in a dynamic setting in [10], and it
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was demonstrated that schemes that are optimal in a statibstantially enhanced spatially homogeneous serviceaisu
setting are sub-optimal for the dynamic setting. Such loadThe rest of this paper is organized as follows: We sum
dynamics also translate to time varying interference seen bp the system model in Section Il. Section Il describes
users, and further impact the performance of schemes debigthe methodology for efficiently abstracting the traffic and
to mitigate inter-cell interference. environment through aggregating users into represeatativ
Potential capacity gains from inter-cell coordination in alasses. In Sections IV-VI, we discuss methods to determine
dynamic setting were characterized in [11], and the resutteordinated schedules that improve user-level performanc
confirm that significant gains can be obtained through intasrder of increasing effectiveness. Section VIl summaribes
cell coordination in an interference limited system. For additional benefits of base station coordination such asepow
practical system, the delay performance experienced big usgavings at the base station, and increased spatial hombgene
at typical system loads is an important consideration. Tl user performance. Finally, Section VIII concludes thpgra
static capacity-optimal schedule developed in [11] is not a
practicable solution for a system at light to moderate loads
Also, the system model considered in [11] is idealized, andIn a wireless cellular network, it is typically transmissgo
would in reality be prohibitively complex in terms of thein the neighboring cells that generate most of the interfege
communication, and computation overhead required. In a small network, all the base stations could potentially b
Contributions: In this paper, we propose a measurementoordinated. Larger networks can be split into a number of
based scheme that is tailored to the spatial load distobutiindependent coordinated clusters, such that the celtsfsec
served by the network, as well as the particular propaga&tivn whose performance is tightly coupled through mutual inter-
vironment. The proposed scheme only requires coarse graifierence are grouped together. L&t denote the number of
information to be communicated among base stations, and omeighboring base stations/sectors being coordinateexée
slow time scales, resulting in greatly reduced demandsen thy b = 1,..., N. User requests arrive at random, and leave
backhaul. We evaluate performance in a dynamic settingavhdine system when the associated data transfer on the downlink
users come and go, and the main metric of interest is fiecompleted. For simplicity, each user is assumed to beederv
transfer delay or average throughput. Due to space limitati by a single fixed base station. We fet= (h?[b=1,...,N)
we focus solely on data traffic, yet voice and real-time traffibe a collection of channel gain vectors, whefeis the gain
exhibit similar gains, albeit one has to address the fingxgda from base statiord to useri, and is measured by each user
QoS requirements of such traffic. and fed back to the serving base station. Fig. 1 depicts the
The key idea is to take advantage of the diversity in usensieasurements made by each user when coordinating three
sensitivity to interference originating from the adjoiginells facing sectors in a hexagonal layout of base stations. Bhis i
— this is not new. The novelty of our work lies in thethe canonical example we will consider throughout this pape
development of new abstractions, a network architecturd, a

Il. SYSTEM MODEL

associated optimizations that make this practical, andieffi.
Our focus is on coordination to improve downlink performanc

<
— a subsequent work will address the quite different uplink Etzf;n

Base

case. We highlight our contributions as follows. / staten 2
First, we develop an approach to measure and classify

a spatial population of users into a small humber of user 4 et for base station 3

classeghat capture average system loads, characteristics of the Base station sﬁ/

propagation environment, and interference sensitivifié®se

user classes are a critical abstraction towards reduciag th Fig. 1. An example scenario for coordination.

complexity of the system-level optimization. To enable the ]

optimization ofclass-levelcoordination schedules, one need- Traffic Model

to properly represent the service rates that classes vélirse  User requests are assumed to arrive to the network as a

a dynamic system. We propose an effective approximation fBoisson process with rate For each base station/sectowe

this which factors the intra-class variability across aser define K, user classethat are used to abstract key characteris-
Second, we investigate the optimization of a coarse-gdaingcs of the load distribution and the propagation environtne

coordination schedule. We consider various scenarios frdfach user request is classified into a user class. Arrivals to

high to low loads. Key differences arise due to the degretassk = 1,..., K® associated with base station/sedicare

of dynamic interference, i.e., neighboring base statiomy mthus Poisson, with rate denoted Dy;. Base stations have

not always be on, and the extent to which this impacts tlee file to transmit to each associated user, with mean file

optimized schedule’s performance. We propose and evaluaige F; bits. Definep,, = Ao Fpr to be the mean traffic

various approaches to incorporate such dynamics. (bits per second) arriving at clags in base statiorb. Let
Third, through extensive analysis and simulation, we illu$' = (py, : b=1,...,N, k= 1,..., K?) denote the expected

trate the significant gains that can be achieved in terms afered load vector. Fig. 2 illustrates a scenario with tvesd

delay performance, power consumption at the transmittet, astations, and two classes per base station. The classesavay h



different offered loads, capturing in part the spatialrifistion  such that
of traffic supported by the system.

Pbk S Rbk (62)7 Vba ka (1)
L
. o < 1 2
B. Service Model lz_; ’ @
a > 0,l=1,...,L. 3)
Base ajoint transmission profile Base . Here, Ry (@) denotes the capacity allocated to cldssat
station A station base statiorb by the schedulei. Eq. (1) constrains the rate
allocation across classes to be one that stabilizes theorletw
Egs. (2), and (3) ensure that the coordination scheduleedick
; is a valid one. In the sequel, we will describe different noetth
2 to determine joint transmission schedules, and use extensi
simulations to compare their performance. The following
Select best joint transmission Determine fraction of time section describes the simulation model in detail.
profiles accross base stations base stations devote to
and classes of users various transmission profiles C. Simulation Model
Fig. 2. lllustration of a joint transmission profile. In the simulations, we consider three facing sectors in a

o o ) . hexagonal layout of base stations with cell radius 250mrdJse

A joint transmission profilerepresents one of the various,;ggociate themselves to the geographically closest batienst
modes in which the network can be operated. As illustrated .o rier frequency of 1GHz, and a bandwidth of 10MHz
in Fig. 2, it specifies a power profile, i.e., the transmit pPOWe,re assumed. The maximum transmit power is restricted to
level for each base station, and the associated user clSSefy\y The base stations are assumed to be able to transmit at
be jointly served. Note that this it a specification of which i, ee different power levels: 0, 5, and 10W. Additive white
user to serve, only a restriction on the transmit power to ussian noise with power55dBm is assumed. We consider
used at the base station and a ‘recommended’ class that mighly gistance path loss model [12], with path loss exponent 2
be beneficially served. Base stations can mdependentl;se:le\shadowing’ and fading are not considered in these preliyina
complementary dynamic user/packet scheduling policies {15 put the addition of shadowing does not fundamigntal
serve their users. For simplicity, in this paper, we assUifiange the characteristics of our measurement driven sghem
that base stations use processor sharing scheduling (0rg@Nhgated in Sec. III-A. Users arrive according to a Poisson
approximation thereof) to serve the active users in a class.prgcess, and are distributed uniformly within the simudate

The base stations are assumed to be able to transmit at giga. File sizes are assumed to be log normally distributed,
of P discrete power levels, including, corresponding to no with mean 2MB. The data rate at which users are served
transmission. TheV-dimensional column vectors® and ¢ s calculated based on the perceived SINR using Shannon’s
specify the power levels and classes to be served by the baggacity with rates quantized to 0, 1, 2, 5, 10, 20, and 30Mbps
stations under power profile and class combinatiofi. The The mean user perceived delay is estimated within a relative
b component of these vectors, andc;, specify the transmit error of 1%, at a confidence level of 95%.
power to be used by base statiband the class to be served.
The number of different power profiles is denotediby= PV, !ll. ABSTRACTING THE TRAFFIC AND THE ENVIRONMENT
the number of class combinations by= [],’, K3, and thus  User classes and class loads aggregate users (locatians) th
the number of joint transmission profiles Is = UV. Let share similar sensitivity to interference from neighbgrbase
P:={p",....,p"} andC := {&",...,c"} denote the sets of stations. They enable base stations to measure, aggragalte,
admissible joint power profiles and class combinationseesp share coarse grained information about the traffic loadg the
tively for the N base stations. Thus, each joint transmissicsupport. They also drive our system-level optimizatiom,,e.

profile | wherel = 1,..., L is two vectors:;p(l) = p* € P Problem 2.1, which has a number of constraints and decision
andc(l) =& € C. variables which respectively grow linearly and polynotyial

A joint transmission schedule corresponds to the fractidns (of degreeN) in the number of classes. As the number of
timed = (oy: [ = 1,..., L) for which the network uses eachuser classes is increased, the fidelity of the gathered-infor

transmission profile. In general, this schedule will be pitk mation increases. However, communication overheads, and
to optimize a chosen performance measifi), through an the computational complexity associated with the proposed

optimization of the form: coordination scheme also grows. Therefore, it is advaoiage
Problem 2.1: A generic optimization problem to determingl® Use a relatively small number of classes. However, in
a coordination schedule: this case, there may be large disparities in transmissitas ra

among users in the same class. In order to solve Problem
] . 2.1, one must properly capture the capacitigg (&) that are
Irgnf(o‘) allocated to user classes under different schedules. Adevil



seen in this section, this is not a simple problem, yet goadcan be served under profileassuming all base stations are

approximations that make the optimization problem convective. Note that?! is zero, if a class other that(i) is served

can be found to make this tractable. by base statiom(i) under profilel.

, ) Proposition 3.1: Consider the downlink queue associated

A. Aggregation of Users into Classes with class k£ at base statiorb. It sees an offered load of
Consider monitoring a user population sharing a wirelegs,. bits/sec., and time varying capacity that dependsiaon

system during a period of time. As shown in Fig. 1, a simplguppose the rate at which base stations switch among profiles

way to capture the environmental conditions is to meastiggfast compared to the time scale of the user dynamics, and

the average channel gains between users and neighborieg laé base station uses processor sharing to serve usershin eac

stations — this is already done in practice to facilitatedwdfs. class, then the queue is stableuif, = % < 1, where

Users sharing similar gain vectors;, have similar suscepti- vk

bility to interference from neighboring base stations., Yat H/ = 1

an interference limited regi : i Ry (@) = - @

gime, Shannon’s capacity foemul 1
suggests that users transmission rates vary as the lagawith E {ZL R b(I) =b, k(1) =k

the ratio of the received signal power to interference. Thars - ) )
each measured user, let us define a logarithmically distorfgUrther, when the queue is stable, the mean number of active

gain vectorg; = (gf|b = 1,...,N), whereg? = log(ht). USers associated with the class is giveny: .
Users sharing similar log-gain vectos will share similar Proof: If the rate at which base stations switch between

transmission rates under the various power profiles. Inghis the different transmission profiles is infinitely fast, thariv

per, ak-means clustering algorithm [13], [14] is used to cluste}tions in rate perceived by users become negligible, and the
measured log-gain vectors into a fixed number of user class®4Stém corresponds to a processor sharing queue operang i
Specifically, the algorithm partitions users associateti iase Uid’ regime similar to the approximation used in [15]. Inis
stationd into K, clusters with centroidg,,k = 1,..., K, '€9ime, atypical usef is served at the average transmission
such that the mean Euclidean distance between the log-giiff 9iven by3>,"; au R} if it is the only active user in the

vectors and the centroids is minimized. Given a clusteringlass. In this case, the time to serve ugels —;*—

=
and the resulting centroid vectors, future users can bsiile$ The mean time to serve a user in the class is Oééi\,’en by
based on which centroid its log-distorted gain vector iseth Fon T
to. With classes defined, estimating the average loads fir e Zf_l aRL | RE(@
class under a given spatial traffic load is a simple task. by the class is then given by, = R%@. The fact that this
processor sharing queue is stable Wh@p < 1 follows from
the results in [10], [15], and the mean queue length of the
system can be computed to @% using the expression for
the queue length distribution from [15]. |
Note that R (&) is the harmonic mean of the average
transmission rates seen by the different users in éasdase
stationb. We denote it the capacity allocated to the class under
scheduler. Unfortunately, estimating this for ea¢hrequires
knowledge of the complete distribution of users versus Bmp
descriptive statistics, e.g., means and variances, whadv
reduce both communication and computational overheads.
The arithmetic and geometric mean of the average transmis-
Fig. 3 exhibits a clustering for a sector in our examplsion rate perceived by users are two alternatives to estimat
scenario where three neighboring base stations are to ddgss capacity. The arithmetic mean approximation is given
coordinated. Note that in practice, due to shadowing ang:
real environment obstructions, user classes will not tdsul
the ‘smooth’ structure or spatial locality exhibited in ghi
example. In fact, they would instead reflect the character of
the environment as well as the typical locations where a user

. L
population tends to dwell. _ ZalE[Rl[ | b(I) = b, k(I) = K]. )
B. Estimating Class Rates =1
Let the random variablé denote a randomly selected useff heé geometric mean approximation for class capacity isngive

from the system’s load distribution, i.ef,= i corresponds to bY:
a location, and assume usestays there until his request is

L
completed. Leb(i), andk(i) be useri's base station and class G () = eXp(E[log(Z aRL) | b(I) = b, k(I) = k).
respectively. Finally, leR! be the maximum rate at which user =1

The total normalized load offered

radially

Fig. 3. An example of class definitions.

Rj(@) = E

L
S R ‘ b(I) = b, k(I) = k]
=1



Note that the arithmetic mean is simple to compute: it depenexpressions are available only in the case of simple sanari
only on the mean rates observed by users in the class undéh two coupled queues. For the moment, we assume that the
each profile, and is linear i&@. However, it can be shown thatperformance of the various base stations are decoupled, and
RE (@) < RS (@) < R{}.(d), whence the geometric mean ishase stations always have users to serve. We might think of
the better estimate for the harmonic mean [16]. Unfortugatethis as a heavily loaded, or saturated regime. We then clieck i
the geometric mean is also burdensome to compute, makimg assumption of decoupling leads to a reasonable altocati
it unsuitable. of resources.

An approan_auoq for the geomet_rl_c mean.based on m%—_ Matching Capacity and Load
ments was derived in [17], and empirical studies presemted i
[18] show that the approximation yields accurate results. W The first approach we consider is to frame the follow-
propose using this approximation, truncated to the first aH¥g optimization problem to determine the joint transnussi
second moments, to effectively capture intra-class diyeirs Schedule:
transmission rates. LeX,, be the covariance matrix of the Problem 4.1:Determining a static, capacity maximizing,
transmission rates to the users in cldsén base statiorh, decoupled schedule: .
Xpi(l,m) = Cov[RY, R | b(I) = b, k(I) = k]. The rate minZa
allocated to clas$ in base statiord is approximated as a = !

Var [Zf:l o Ry j b(I) =b, k(I) = k} such that

2R}, (d) R” b(’“@,) < 1,Vb,k,
— O_ZTkaO_Z bk
=Ry (@) = s5q = (6) a > 0,1=1,...,L.

2Rj) (@) _ . : :
optimal schedule maximizes the fraction of time that the

. . Th
Thus, the capgcuy allocated tq all classes can be estlma@(ﬁem is idle, which is a natural starting point. The optima
with the coordinating base stations exchanging only thSSCIa[ransmission schedulg* assigns capacity to each class in

Egans, andf_::ovarlances of the transmission rates under ﬁpgportion to the offered load. This formulation is similar
fiterent profiles. to the one in [11], and the optimal schedule stabilizes the

Our simulation results indicate that the geometric MeaMwork, if possible, for any load distribution proportirto

approximation yields considerably better estimates far tr}; when Ry, (@) is exact, i.e..Ry, (@) = R ().

class capacities, compared to the arithmetic mean. Howeven o se the geometric approximation from Eq. (7) to esti-

the estimate in Eq. (6) dqes not lead to constraint (1)_ bei?rgate the class capacities. To determine the constaptswe
a provably convex function ofi. We use the following first solve optimization Problem 4.1 witRy,(@) = R (&),

approximation to Eq. (6) to model the allocated rates: to find @4*. We letc,, be the arithmetic mean approximation
al Xy.a of the rate allocated using schedul', c,, = R{Y =
—_— (7)  pA (gA*

Cbk o (Q77).

Here, ¢ is a positive constant that is appropriately chosen, to
yield a good estimate for the class capacity.

Rij, (@) ~ Ry, (d)

RN (@) = Ry (@) —

50

45~

IS
o

Cok No Coordination
@, when it is positive, and is any positive constant.

Proof: % is convex ind&, since the covariance
matrix and thus the Hessian is positive semidefinite. Also,

—RA (@) is a linear function ofi. Thus,— R (&@)+ &-2Xesd g

Cok

also convex ind. This implies that- ( —R{} (&) + a7 Xp,d

o _\ —1
Fact 3.1: (Rg}c(&) - m) is a convex function of
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is a convex function ofy. |
Fig. 4. Average file transfer delays under capacity maximizatatic
IV. STATIC SCHEDULING schedules.

The key element of base station coordination for downlink The graph in Fig. 4 shows average downlink file transfer
transmission is the joint selection of a coordinated scleedudelays vs. offered load under three schemes: uncoordinated
Determining the exact capacity allocated by a scheduledb edransmissions at the maximum power, and two static approx-
class in the coupled system corresponds to analyzing a igeations with two and three user classes per base station. At
of spatially coupled (through interference) queues. 3yste higher loads, coordination performs extremely well, imying
of coupled queues have been analyzed in the past [1@elay performance over the scheme with no coordination by
[21], but the problem is extremely difficult and closed fornover 80%. However, this is not uniformly the case, and at



very low loads, the coordination scheme increases meaggela,;, and v, (@) is a convex function ofv. Since the com-

by around 50% compared to the non-coordinated schempesition of a convex, non-decreasing function and a convex
Under low loads, coordinating across base stations to atéig function is convex,% is a convex function ofd.
mtgrferer_lce is less of.a concern because the probab|llgt_§/ “Therefore, the sunz_f,vzl ZkK:bl 1332(,:?&) is "?‘ISO_ convex. m
neighboring base stations are simultaneously transmit8n one can also consider other convex objective functions to
low. Therefore, one might as well allow base stations tniure other QoS metrics such as blocking rate, or other

transmit at higher power without coordination. Also, sinCgetrics such as power consumption at the base stations.
we are using a static schedule, the probability that theee ar

no active users in the class scheduled at a base station is
high at low loads. This leads to the base station unnecéssari 16
wasting time while users wait their turn to get served. This i 14
also the reason for the coordination scheme using two dasse
outperforming the scheme with three classes until the edfer

load is high enough. A larger number of classes results in
base stations wasting more time when using a static schedule
as the scope for statistical multiplexing is further redluce

121

=)
T

File Transfer Delay(secs)
o2}

Splitting the load and the resources into independent small ¢ [ il
chunks results in reduced capacity for sharing, and incurrs Bl e
a statistical multiplexing loss. At low loads, the gainsnfro 04 08 08 1 12 14 18 18 2z 22 24

Arrivals per second

reduced interference levels resulting from careful camation
acr93§ base S_tat'ons are not sufficient to compensate for &?é 5. Comparing the performance of capacity maximizing andydeptimal
statistical multiplexing loss. static, decoupled schedules with 2 classes per sector.

B. Delay Optimal Scheduling The performance of the capacity maximizing schedule de-

When the load offered by different user classes is veif/oPed in Sec. IV-A is compared to the above formulation
different, allocating capacity proportionally to the loddes Which minimizes the overall queue length under a static
not result in optimal delay performance. Classes with aellargSChedU|e' Both scenarios utilize two classes per bas.rs,t.a.n
number of users share the allocated capacity more efféctiv"d three transmit power levels. The queue length-mingizi
due to statistical multiplexing within the class vs. ‘smeall approach clearly outperforms the first heuristic that aited

classes. Therefore, delay performance can be further iragro CaPacity proportionally to the class loads. This is mainly
by allocating more than a proportional share of the capdoity because this approach takes into account the potential each

the smaller classes, and less to the larger classes. WagentC'aSS has for statistical multiplexing. We will use this gae
to assume that the different base stations are decoupled. ﬁpgth-mlmmlzmg approaqh as the basis for developinthiur
following optimization minimizes the sum queue length asro improved joint schedules in the sequel.

all the classes, assuming each class corresponds to a M/GI/1 V. DYNAMIC INTER-CLASS SCHEDULING

PSPqubeiue, ZhlzJ.stinimi_zi.ng user—pgrcc(ejivltad delay. do.. Note that, in downlink transmissions, the capacity pereiv
rc|> demh .d. Igtermmmg a static, delay minimizing, e'by users in neighboring base stations is independent of the
coupled schedule: user/class that a base station serves and depends only on

X iy R;’:g&) the transmit power levels used by the various base stations.
rrgnZ 1= oo Thus, when there are no active users in the class picked by
b=1k=1" Hor(d) the static schedule, the base station can dynamically pick
such that an alternate class to serve without adversely affecting any
/’bkq < 1,Vb,k, pf the cooperating base §tations, ie., withogt increasimey
Ry (@) interference levels perceived by users. This class can be
L chosen by the base station based on different criteria, asich
Zaz < 1 maximizing transmission rates, or serving the class with th
=1 largest number of active users. We refer to this as intesscla
o > 0,1=1,...,L scheduling.
The constraint set in the above optimization problem is The dynamic scheduling strategy that we adopted is to
convex, as shown in Sec. lll-B. serve all active users associated with a base station aogord
. G, : to a processor sharing mechanism when the scheduled class
Fact 4.1: N S™F Tl s 3 convex function off, : . . .
_ _ Lp=1 2k e e has no active users. We found in our simulations that the
if #&) IS convex. delay performance of this strategy compared favorably to
Pbk_ .. . .
Proof: Let wy(@) = Rﬂb&i)' Then, — B _ other policies. Note that this strategy allocates a praqoatly
prAT Ry @ larger rate to those classes that have a large number of

1fi’fﬁg)- 1f’;’1§§2§) is a convex non-decreasing function ofctive users. When the traffic offered by all classes share



similar characteristics, the optimized static schedulariz@es problem. However, if the utilizations can be estimated, the
the expected number of active users in each class. Thus, #isual capacity perceived by classes in the dynamic, cduple
dynamic scheduling strategy attempts to align the avalaldystem can be approximately determined. This would, in, turn
capacity to the particular instantiation of the offereddofn allow us to pick better coordination schedules that exgici
Fig. 6, we show results for coordination along with dynamitake into account the degree to which the base stations are
inter class scheduling. coupled.

Consider again the static coordination scheduling poli-
cies introduced in Sec. IV. Leti(@) = (up(d@) : b =
L,...,N, k = 1,...,K"), where uy,(&) is the resulting
utilization of classk in base statiorb. As the base stations
switch among different transmission profiles, a base statio
might not transmit in a designated profile if there are novecti
users at that base station. As a result, users in neighbloaisg
stations can be served at enhanced rates. This effect can be
modeled as a correspondence between a profile chosen as part

-~ Coordination of the joint transmission schedule, and a humbeindiced
e el Inter-Class Scheduling profiles in which the network actually operates depending on
A o class utilizations.
A base station remaining idle, with no users to serve just
Fig. 6. Average file transfer delays under delay-minimiziragist decoupled corresponds to using a transmit power level equal to zero,
schedules complemented by dynamic inter class schedulingvalhsses per . . . . . .
sector. which is a valid choice. WhenV base stations are being
, coordinated, each transmission profile can, in actual tipera
result in one of up t@" profiles depending on which base
stations are busy, or idle. Note that, these induced profiles
No Coordination are still a subset of’. Let 3 = (8,,: m = 1,...,L) be

Static Coordination the fractions of time actually spent in each profile when the

" Inter-Class Schedling transmission schedule specified &yis followed.

No Coordination:

101

\_:1.:4.'“

Static Coordination--- .

File Transfer Delay(secs)

L
B(@ ) = 3 cwg (@)
=1

User perceived throughput (bytes/sec)

Here, ¢;* (%) is the probability that the network happens to
04 06 08 1 Z\EWS ;‘; 15 18 2 22 24 operate in profilen, based on the states of the base station
gueues, when transmission profilés the one chosen by the
Fig. 7. Average user throughput under delay-minimizing statecoupled transmission schedule. We define the vectdt = (Sém
schedules complemented by dynamic inter class schedulingvatasses per p = 1, ... N) that takes binary values as f0||OW$;m =1
sector. o if py(1) = py(m), and0 otherwise. We estimatg” assuming
As can be seen in Figs. 6 and 7, complementary dynamjgyt the busy periods of the queues corresponding to theedas

scheduling significantly improves user delay performant a;,, gifferent base stations are independent, i.e.
throughput, especially at light to moderate loads wherermea

delays are reduced by up to 40% as compared to the static 0 if ¢(l) # c(m),

scheme. At very low loads, it is still true that a schemg™ () = < 0 if p(m).(p(1) — p(m)) # 0,

that transmits at maximum power without any coordination HIJ)V L (uy, (l))slb"‘(l — (Z))(lfsif”') otherwise
= cp Co ’

outperforms the coordination scheme. Attempting to coor-

dinate transmissions at low loads results in base statiohd€ fraction of time actually spent by the network in each
needlessly using a lower power, thus transmitting at a lowéduced profile can be computed in a similar fashion in
rate even when the neighboring base stations are idle. 8inceth® case of the dynamic coordination policy, except gjat
probability of simultaneous transmissions occurring isimal  depends on the probability that there are no active users in

at low loads, coordinating is not worthwhile. any of the classes associated with a base station.
We propose to compute a joint transmission schedule opti-
V1. OPTIMIZING THE COUPLED SYSTEM mizing users’ delay performance while taking into account

Our coordination schedules thus far have not taken intibe coupling across base stations iteratively. L¢t, R7,
account the utilization of the neighboring base stationd,the represent the utilization, and rate estimates for the efass

coupling induced by inter-cell interference. This is rasgible used in iterationz. G = Bz, - m=1,...,L) denotes the
for the poor performance at low loads. Determining the exacbmputed resultant schedule induced by the choice of time
utilizations of the mutually coupled network of base stasio fractions@* = (af : [ = 1,...,L) in iteration z, and is a

for a particular joint transmission schedule is a difficultunction ofuf,, and@*. &** denotes the optimal coordination



schedule found in iteration, and EZ* the resultant induced
schedule. Initiallyu}, = 1, Vb, k, and R}, = R\, and

Dynamic, coupled
schedule

Bu(@, @) = Zazqz

User perceived throughput (bytes/sec)

+1 Pbk L
Uik = W, Vb, ke e
Ry, (B2)) it N
o . . . . Static, decoupled Static, coupled :
The optimization problem solved at each iteration is: I e schedulo D el O
Problem 6.1: Determining a delay minimizing schedule for schedule
the coupled network: 06 08 1 12 14 16 18 2 22
Arrivals per second
Pk
mmzz R, (5%) Fig. 9. Average user throughput under delay-minimizing satesd that
— Lok account for inter-base station coupling, with 2 classessgetor.
b=1 k=1 Rz, (87)
such that level used by the base stations. The coordinated schedule
Pok < 1.Vbk performs as well as random scheduling at very low loads, when
ng(gz) - the probability of simultaneous transmissions at neiginigor
base stations is extremely low. At moderate to high loads,
Zo‘f < 1, the coordinated scheduling scheme that factors in the teffec
of coupling across base stations considerably outperfoines
of > 0,1=1,...,L non-coordinated network, decreasing mean delays by over

. ) ] ~ 80% compared to a non-coordinated scheme. This ensures
In the simulations that follow, we use the following geonetr that the coordination scheme achieves good delay perfaenan

rate approximation based on Eq. (7): irrespective of the load on the network.
- T -
I 2, >, 8% Xy.B? VII. POWER SAVINGS AND SPATIAL HOMOGENEITY
(57 = RGN (B7) = Ri(8°) = — 5 = —
2Ry (B0 .
The objective function, and constraints in optimizatiomt?r o

Max transmit
8 power

lem 6.1 are convex, sincéz is a linear function of&, and

the composition of a convex function and an affine function
preserves convexity. This ensures that the problem can be
efficiently solved at each iteration.

No coordination

Dynamic coupled

5.5+ x coordination

Average Transmit Power (\Watts)

Static, decoupled
schedule i

.
0.4 0.6 08 1.2 1.4 1.6 1.8 2 22
Arrlvals per second

Static, coupled
schedule

Dynamic, decoupled
3k schedule -

Fig. 10. Average power consumed at the base stations.

In addition to improving delay performance and capacity,
coordination has further benefits. As shown in Fig. 10, the
average power expended by the base station is substantially
reduced when coordination is used, e.g., 45% when the hkrriva

Arivals per second 2 rate is 2 users per second. This suggests a reduction imgooli
costs at the base station, and also indicates that we cédmefurt
Fig. 8. Average file transfer delays under delay-minimizingestules that improve delay performance if the base stations are allowed t
account for inter-base station coupling, with 2 classesspetor. transmit at higher peak power levels.

Fig. 8 illustrates the reduction in average user-perceivedFig. 1la, and 11b shows the spatial delay distribution
delays that is achieved using two iterations in the aboweduced by the scheme without coordination, and the coor-
formulation. Here, we do not show the delay performanaination scheme that minimizes the overall queue lengtth wi
of the scheme with no coordination for clarity. Fig. 9 showa = 1.75. As shown in Fig. 11b, when coordination is used,
the increased user throughputs achieved by this coordmatthe average delays seen by users at different locations are
scheme, and also compares against the non-coordinated camech more spatially homogeneous relative to the case with no
Now, at low loads, the coordinated transmission scheduds da@oordination. In particular, with no coordination userstte
not penalize performance by restricting the transmit powedge experience very poor performance. Under coordination

2.5 Dynamic, coupled
schedule

File Transfer Delay(secs)
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users’ experience is virtually decoupled from their logatin ~ [3] T. K. Fong, P. S. Henry, K. K. Leung, X. Qiu, and N. K. Sharka
narayanan, “Radio resource allocation in fixed broadbanckleds

the coverage area. networks,” [EEE Trans. Commun.vol. 46, no. 6 806-818, Jun

Fig. 11c plots the distribution of delay across all users, 1g9g ' VoL A5, - B P A
when A = 2. Coordination improves delay performance for[4] K. K. Leung and A. Srivastava, “Dynamic allocation of ddlimk and
all users, not just the ones at the edge. This is because the Uplink resource for broadband services in fixed wireleswoits,” IEEE
. . . - J. Select. Areas Commuwol. 17, no. 5, pp. 990-1006, May 1999.

coordination scheme increases the probability that th&r@@ 57 x. giu and K. Chawla, “Resource assignment in a fixed braado

active users at a base station. Thus, even though users closewireless system,JEEE Communications Lettersol. 1, no. 4, pp. 108-
to the base stations are potentially served using lowesmtnin 110, Jul. 1997.
p y 9 [6] A. Ghasemi and E. S. Sousa, “Distributed intercell cooatipn through

power levels, they benefit from lower interference levels. time reuse partitioning in downlink CDMA,” itEEE Wireless Commu-
nications and Networking Conferena®l|. 4, Mar. 2004, pp. 1992-1997.

VIIl. CONCLUSION AND FUTURE WORK [7] K. Chawla and X. Qiu, “Quasi-static resource allocatiamith inter-
ference avoidance for fixed wireless system&EE J. Select. Areas

We focused on a low complexity, system-level approach Commun.vol. 17, no. 3, pp. 493-504, Mar. 1999.
that improves performance perceived by best-effort usars d8] J: Li. N. B. Shroff, and E. K. P. Chong, "A static power coitscheme
for wireless cellular networks,” inREEE INFOCOM vol. 2, 1999, pp.

the downlink without requiring high channel measurememnt an  g35_g30.
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estimation, communication, and computational overhegls.
cellular networks,” inProceedings of the 44th Allerton Conference

proposed approach simultaneously achieved spatially homo SIS .
£ hil | duci the transmit Communication, Control, and Computin§eptember 2006.

geneous periormance while also reducing the trans pOVYﬁj'] S. Borst, “User-level performance of channel-awareedcifing in wire-

less data networks,” ilNFOCOM 2003 vol. 1, March-April 2003, pp.

requirements. System-level coordination can also be phiyit

used in the case of (packet) delay sensitive traffic, as long 321 - 331. o o
itabl | t d ) heduli h 1 %T' Bonald, S. Borst, and A. Proutiere, “Inter-cell sdhéng in wireless

as suitable complementary dynamic user scheduling scheme data networks,” inEuropean Wireless Conferenc2005.

are developed to meet users’ QoS requirements. The propogef T. S. Rappaportireless Communications: Principles and Practice,2/E
Prentice Hall PTR, 2002.

coordination scheme can also be extended to improve upli
P P [r]1.3 M. Anderberg, Cluster Analysis for Applications Academic Press,

on

performance. However, the interference levels perceiyetie 1973,
receiving base station in uplink transmissions depends ot [14] A. Jain and R. DubesAlgorithms for Clustering Data Prentice Hall,
1988.
e

the power levels used in the neighboring cells, as well as t ) S
.. . . 15] T. Bonald, S. Borst, and A. Proutiere, “How mobility impacthe
positions of the interfering users. Therefore, complergnt flow-level performance of wireless data systems,INFOCOM 2004.
dynamic scheduling schemes need to be carefully designed Twenty-third AnnualJoint Conference of the IEEE Computed &om-
munications Societiesol. 3, 2004, pp. 1872-1881 vol.3.

for the uplink to extract the maximum possible gains fro
P P 9 16] G. Hardy, J. E. Littlewood, and G. Polyégequalities Cambridge,

coordination. A factor that we have not considered in thiS™ 1g97.

paper is user mobility. Mobile users simply transition froni7] W. E. Young and R. H. Trent, “Geometric mean approximatiofis
individual security and portfolio performanc&he Journal of Financial

one class to another as they move about within the network, = ;
and Quantitative Analysjsol. 4, no. 2, pp. 179-199, Jun. 1969.

and can potentially be treated as premature departures fr@g} w. 1. jean and B. P. Helms, “Geometric mean approximatiohisé
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